Identification of a tissue-specific, C/EBPβ-dependent pathway of differentiation for murine peritoneal macrophages.

نویسندگان

  • Derek W Cain
  • Emily G O'Koren
  • Matthew J Kan
  • Mandy Womble
  • Gregory D Sempowski
  • Kristen Hopper
  • Michael D Gunn
  • Garnett Kelsoe
چکیده

Macrophages and dendritic cells (DC) are distributed throughout the body and play important roles in pathogen detection and tissue homeostasis. In tissues, resident macrophages exhibit distinct phenotypes and activities, yet the transcriptional pathways that specify tissue-specific macrophages are largely unknown. We investigated the functions and origins of two peritoneal macrophage populations in mice: small and large peritoneal macrophages (SPM and LPM, respectively). SPM and LPM differ in their ability to phagocytose apoptotic cells, as well as in the production of cytokines in response to LPS. In steady-state conditions, SPM are sustained by circulating precursors, whereas LPM are maintained independently of hematopoiesis; however, both populations are replenished by bone marrow precursors following radiation injury. Transcription factor analysis revealed that SPM and LPM express abundant CCAAT/enhancer binding protein (C/EBP)-β. Cebpb(-/-) mice exhibit elevated numbers of SPM-like cells but lack functional LPM. Alveolar macrophages are also missing in Cebpb(-/-) mice, although macrophage populations in the spleen, kidney, skin, mesenteric lymph nodes, and liver are normal. Adoptive transfer of SPM into Cebpb(-/-) mice results in SPM differentiation into LPM, yet donor SPM do not generate LPM after transfer into C/EBPβ-sufficient mice, suggesting that endogenous LPM inhibit differentiation by SPM. We conclude that C/EBPβ plays an intrinsic, tissue-restricted role in the generation of resident macrophages.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synergistic Effect of LPS, IFN- and Iron on Apoptosis of Balb/c Mice Macrophages Following Nitric Oxide Production

Objective(s) Previous studies have demonstrated that the nitric oxide (NO) dependent death of murine peritoneal macrophages activated in vitro with IFN-g and LPS is mediated through apoptosis. In the present study, we investigated the synergistic effect of LPS, IFN-g and iron on NO production and apoptosis. Materials and Methods After determination of iron cytotoxicity, the peritoneal macrop...

متن کامل

Identification of a Tissue-Specific, C/EBPb-Dependent Pathway of Differentiation for Murine Peritoneal Macrophages

Macrophages and dendritic cells (DC) are distributed throughout the body and play important roles in pathogen detection and tissue homeostasis. In tissues, resident macrophages exhibit distinct phenotypes and activities, yet the transcriptional pathways that specify tissue-specific macrophages are largely unknown. We investigated the functions and origins of two peritoneal macrophage population...

متن کامل

Effect of Shark Liver Oil on Peritoneal Murine Macrophages in Responses to Killed-Candida albicans

Objective(s) Shark Liver Oil (SLO) is an immunomodulator. Macrophages play a key role in host defense against pathogens like fungi. Candida albicans have mechanisms to escape immune system. We determined the effect of killed-Candida on the in vitro viability of macrophages and the effect of SLO on augmentation of this potency. Materials and Methods Peritoneal macrophages were separated and c...

متن کامل

Toxic Effect of Verapamil on Human Peripheral Blood Mononuclear Cells and BALB/c Peritoneal Macrophages, in vitro

Background & Aims: Verapamil as a calcium channel blocker has been broadly used in the treatment of many cardiovascular diseases such as hypertension and arrhythmia. Furthermore, the anti-tumor/ antiinflammatory effects of verapamil have been shown. In the present study, the cytotoxic effect of verapamil on human peripheral blood mononuclear cells (PBMCs) and BALB/c peritoneal macrophges has be...

متن کامل

Cyclin D1 and C/EBPβ LAP1 operate in a common pathway to promote mammary epithelial cell differentiation.

Both cyclin D1 and the transcription factor C/EBPβ are required for mammary epithelial cell differentiation; however, the pathway in which they operate is uncertain. Previous analyses of the patterns of gene expression in human tumors suggested a connection between cyclin D1 overexpression and C/EBPβ, but whether this represents a cancer-specific gain of function for cyclin D1 is unknown. C/EBP...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of immunology

دوره 191 9  شماره 

صفحات  -

تاریخ انتشار 2013